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Abstract: The main focus of this paper is to develop an Inverse Dynamic Neuro-Controller (IDNC) by 
utilizing the inverse dynamic relationship of the superheater system for a large-scale ultra-supercritical 
(USC) boiler unit. After a recurrent neural network-based Inverse Dynamic Process Model (IDPM) has 
been built  and trained,  it  is  then used as a  feedforward  controller  to improve the superheater  steam 
temperature control. In order to eliminate the steady-state control error induced by the model and the 
IDPM error, a simple feedback PID compensator is added to the inverse controller. Simulation control 
tests are  made on a full-scope simulator of the USC power generating unit to test  the validity of  the 
method. It is shown that the convergence speed of the IDNC is faster than the conventional cascaded PID 
control scheme. Best control result can be acquired by the IDNC together with a simple PID feedback 
compensator.

Keywords: Ultra-supercritical  (USC)  boiler,  superheater  steam temperature  control,  inverse  dynamic 
neuro-controller, neural network, feedforward control, PID compensator.

1. INTRODUCTION

In  recent  years,  supercritical  and  ultra-supercritical  boiler 
technologies  have  been  undertaken  in  modern  coal-fired 
power plants worldwide, which are motivated by the pressing 
need of higher efficiency, lower generation costs and lower 
emissions  (Susta  and  Khoo,  2004).  The  superheater  steam 
temperature  is  among the  most  important  variables  for  an 
ultra-supercritical (USC) boiler in a large-capacity fossil-fuel 
power generating unit, which must be controlled to be within 
certain upper and lower limits to ensure high efficiency and 
safety  of  the  power  unit.  However,  often  it  is  not  easily 
controlled with a simple PID controller since the USC boiler 
is  a  multi-input  multi-output  (MIMO)  nonlinear  system 
consisting  of  many  strongly-coupled  sub-systems,  which 
leads to a large time delay and big inertia to the superheater 
steam  temperature  response.  Therefore,  cascaded  PID 
controllers  are  generally  used  for  superheater  steam 
temperature  control  and  the  control  logic  is  getting  more 
complex with the increasing boiler capacity. Moreover, even 
for  a  cascaded  control  scheme with at  least  2 PID control 
modules,  the  gains  and  time  constants  of  these  PID 
controllers  have  to  be  tuned  frequently  to  achieve  good 
control  results  under  different  loading  condition  and 
changing  environment,  which  often  costs  much  effort  and 
time (Benyo, 2006). Therefore, it is of high necessity to adapt 

intelligent  control  algorithms  to  improve  the  superheater 
steam temperature control. 

Artificial  neural  network  is  an  attractive  method  for 
identifying  nonlinear  processes,  due  to  its  good  modelling 
capability and its ability to learn complex dynamic behaviour 
of a physical system. Recently, various applications of neural 
networks have been widespread in process control,  both in 
simulation and on-line implementation, including predictive 
control,  inverse-model-based  control  and  adaptive  control 
(Ku,  et  al,  1992;  Chi-li-Ma  and  Lee,  1998;  Azlan,  1999; 
Zhang, et al, 2006). Feedforward and recurrent networks are 
the two most commonly used neural network structures for 
modelling,  prediction  and  control  of  nonlinear  dynamic 
systems.  A  feedforward  network  is  a  static  mapping  that 
model a steady-state condition of a plant.  It can also be used 
to model dynamic behaviour of the plant by including past 
input  and  output  values  as  additional  inputs.  On the  other 
hand,  a  recurrent  network  possesses  internal  memory  by 
including  internal  feedbacks  for  past  values,  either  from 
network output into hidden units or from hidden units into 
hidden units (Ku and Lee, 1995; Gencay and Liu, 1997).   

The  main  focus  of  this  study  is  to  use  a  recurrent  neural 
network  to  model  the  inverse  dynamic  relationship  of  the 
superheater  steam  temperature  for  a  large-scale  ultra-
supercritical (USC) boiler unit and to use the trained inverse 
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dynamic neural network model as a feedforward controller to 
improve the superheater steam temperature control. Detailed 
simulation control tests are made on a full-scope simulator of 
the power generating unit to test the method.

2. SYSTEM DESCRIPTION

The  power  plant  under  investigation  is  a  large-scale  coal-
pulverized,  once-through  ultra-supercritical  (USC)  boiler-
turbine-generator unit. The feedwater pumped into the boiler 
will travel through several parts before it becomes qualified 
superheated steam and is sent to high-pressure (HP) turbine, 
among  which  are  the  coal  economizer,  the  waterwall,  the 
steam-water  separator,  the  primary  superheater  (SH),  the 
division  SH,  the  platen  SH  and  the  final  SH.  The  steam 
leaving  the  HP turbine  is  reheated  in  the  boiler  using  the 
primary  reheater  (RH) and  the  final  RH.   The  two forced 
draft  fans  and  two primary  air  fans  provide  air  to  the  air 
preheater.  The air preheater  in turn provides  hot  air  to the 
pulverisers, burners, and furnace.  The primary air fans also 
provide cold air to the pulverizers. The fuel is provided to the 
furnace through the pulverizers and burners. Furnace pressure 
is maintained at the desired value by controlling two induced 
draft fans. The waterwall surrounding the furnace vertically 
and  spirally  absorbs  the  heat  of  flame  and  gas  inside  the 
furnace area and heats the feedwater into slightly superheated 
steam. The steam-water separator on top of the furnace then 
supplies superheated steam to the primary superheater.  The 
primary superheater and reheater are, respectively,  installed 
in the rear silo and front silo of the boiler’s vertical gas pass. 
The flue gas exiting the furnace travels through the division 
SH,  the  platen  SH,  the  final  SH,  the  final  RH  and  the 
paralleled primary  RH  and  primary  SH.  The  coal 
economizers are used to raise the feedwater temperature with 
the  flue  gas  before  it  leaves  the  boiler.  The  sketch  of  the 
boiler unit is shown in Fig. 1.

Fig. 1. Sketch of the 1000MW USC boiler unit.

3. RECURRENT NEURAL NETWORK-BASED INVERSE 

DYNAMIC PROCESS MODEL (IDPM)

Recurrent  neural  network  differs  from  other  conventional 
feedforward networks in that it includes recurrent or feedback 
connections  (Elman,  1990;  Ku and  Lee,  1995;  Gao,  et  al, 
1996; Cheng,  et al,  2002). The delays in these connections 
store  values  from  the  previous  time  step,  which  makes  it 
sensitive to the history of input and output data and fit for 
dynamic  system  modelling.  For  convenience,  the  Elman 
network is often used for a recurrent neural network, which 
has tansig neurons in its hidden (recurrent) layer, and purelin 
neurons in its output layer  (Elman, 1990). This combination 
is  special  in  that  a  three-layer  network  with these  transfer 
functions can approximate any function (with a finite number 
of discontinuities) with arbitrary accuracy if the hidden layer 
has  enough  neurons.  The  structure  of  an  Elman  recurrent 
network is shown in Fig. 2.

Fig. 2. Structure of the Elman recurrent network model.

As shown in Fig. 2, the outputs in each layer of the network 
can be given by:
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Where,  jiW ,1  is the weight that connects node  i in the input 
layer to node  j in the hidden layer;  jiW ,2  is the weight that 
connects node  i in the hidden layer  to node  j in the output 
layer;  jiW ,3  is the weight that connects node i in the context 
layer  to  node  j in  the  hidden  layer;  f(·)  and  g(·)  are  the 
transfer  functions  of  hidden  layer  and  output  layer, 
respectively.

An  Elman  neural  network  can  be  created  and  trained 
according to the back-propagation algorithm with MATLAB 
Neural Network Toolbox. When the entire input sequence is 
presented  to  the  network,  its  outputs  are  calculated  and 
compared  with  the  target  sequence  to  generate  an  error 

   



sequence. For each time step, the error is back propagated to 
find  gradients  of  errors  for  each  weight  and  bias.  This 
gradient  is  actually  an  approximation,  because  the 
contributions of weights and biases to errors via the delayed 
recurrent connection are ignored (Elman, 1990; Cheng, et al, 
2002). However, more accurate gradient can be evaluated by 
including the contributions through the recurrent neurons (Ku 
and  Lee,  1995).  This  gradient  is  then  used  to  update  the 
weights with the chosen back-propagation training function 
(Demuth,  et al, 2007). Since Levenberg-Marquart method is 
fast  and  has  robust  convergence  property  in  the  off-line 
training, it is used for training the Elam network in our work. 

The inputs and outputs of an inverse dynamic process model 
(IDPM) for a given system can be determined after analyzing 
the system and the problem carefully based on the inverse 
control  principle  (Widrow and  Plett,  1997;  Chi-Li-Ma and 
Lee, 1998). Then a neural network-based IDPM can be built 
and  trained  with  enough  historical  inputs/outputs  data 
sequence. The training process is shown in Fig. 3. 

Fig. 3. Training of the IDPM.

Assuming the  network  which  reflects  the  inverse  dynamic 
process  has  been  obtained  through  a  training  process 
described  in  Fig.  3,  it  can  then  be  used  as  a  feedforward 
controller by replacing the input of the inverse model with 
the expected setpoint  refy .  How the IDPM is applied as a 
feedforward  controller  is  shown in Fig.  4.   If  the network 
represents the exact inverse, the control output )(kur  produced 
by the network will drive the system future output  )1( +ky  

to refy .

Fig. 4.  The IDPM used as a feedforward controller. 

Since an inverse  dynamic  process  model  expressed  by the 
neural  network  is  not  a  complete  inverse  but  an 
approximation, it may generate a steady-state error when it is 
used as a feedforward controller. Therefore, a supplementary 

signal  E(k)  is  needed   to  eliminate  the  steady-state  error 
induced  by  modelling  error  and  other  disturbances.  The 
supplementary  signal  E(k)  can  come  from the  output  of  a 
feedback  PID compensator.  This combined control  scheme 
with  an  IDPM  feedforward  controller  and  a  simple  PID 
feedback compensator is shown in Fig. 5.

Fig. 5. Inverse control scheme with a PID compensator. 

4. IDPM DESIGN FOR SUPERHEATER STEAM 
TEMPERATURE CONTROL

4.1 IDPM Structure

By  isolating  the  superheater  system  from the  whole  USC 
boiler  unit  and  carefully  analyzing  the  most  important 
peripheral  influence  variables  of  the  superheater  steam 
temperature,  the  inverse  model  structure  for  superheater 
steam temperature control with the 2nd-stage and 3rd-stage 
de-superheating water is designed. 

It is noticed that the superheater system is not a simple SISO 
system.  Many  variables  influence  the  superheater  steam 
temperature,  such  as  air,  feedwater,  coal  flow, 
reheater/superheater damper position and several water-spray 
attemperators. Therefore, the IDPM should include all these 
factors. 

According to the original USC boiler control logic, the spray-
2  and  the  spray-3  are  used  for  controlling  the  platen 
superheater outlet temperature and the final superheater outlet 
temperature,  respectively.  Since  we  plan  to  use  only  one 
neural network to control both, the spray-2 and the spray-3 
valves, the neural network should include 2 outputs, i.e., the 
spray-2 and the spray-3 control demands. At the same time, 
the  platen  SH  outlet  steam  temperature  and  the  final  SH 
outlet  steam  temperature  are  included  in  the  inputs.  The 
inputs and outputs of the neural network IDPM are shown in 
Table 1.

Table 1. IDPM structure for SH temperature control.

Inputs (9)

(1) Boiler demand

(2) Turbine demand

   



(3) Forced draft fan demand 

(4) Primary air fan demand

(5) Coal feeder demand

(6) Feedwater pump demand

(7) Superheater damper demand

(8) Platen SH outlet steam temperature

(9) Final SH outlet steam temperature

Outputs (2)

(1) Spray-2 control demand

(2) Spray-3 control demand

4.2 Training Data Preparation 

The inverse  neural  network  controller  can  be  viewed as  a 
feedforward controller.  Its  main function is  to provide fast 
control when the unit load demand is changed. Thus, we need 
data for  wide range  operating conditions,  both steady-state 
and dynamic transient processes to train the neural network. 
If  the  data  used  for  network  training  is  not  sufficient  we 
cannot count on the inverse controller to give reliable control 
demands  under  different  operating  conditions.  Therefore, 
data  selection  is  a  very  important  factor  during  the  IDPM 
development. 

In our work, following conditions are included in the original 
training data, totalling 1894 groups: (1) different steady-state 
conditions, 100%, 95%, … ,65% load levels;  (2) load change 
from 100% to 95% load levels; (3) load change  from 95% to 
90%; (4) load change  from 90% to 85%; (5) load change 
from 85% to 80%; (6) load change  from 80% to 75%; (7) 
load change  from 75% to 70%; (8) load change  from 70% to 
65%.

4.3 Training and Development of the IDPM 

For the designed IDPM neural network with 9 inputs and 2 
outputs, its optimal hidden neuron number can be determined 
with  a  MATLAB  optimal  search  program.  The  optimal 
number  of  hidden  neurons  thus  found  is  17.   Then  the 
network is trained with the above 1894 groups of data. The 
training  process  of  this  IDPM  for  superheater  system 
temperature control is shown in Fig.  6. The training mean-
squared error (MSE) curve is shown in Fig. 7. 

Fig. 6. Training of the IDPM for superheater steam 
temperature control.

Fig. 7. Convergence of the SH IDPM training.

The outputs of neural network are compared with the actual 
control demands (data used for training) in Fig. 8 and Fig. 9. 
The dashed lines are the outputs of the neural network.

Fig. 8. Spray-2 control demand.

   



Fig. 9. Spray-3 control demand.

5. CONTROL SIMULATION TESTS

After the inverse dynamic process model (IDPM) has been 
trained, it can be used as a feedforward controller for spary-2 
and  spray-3  control  valves  by  replacing  the  model’s  9th 
input, the final SH outlet steam temperature, with its setpoint, 
while other inputs still using their original values for the unit. 
For this USC boiler unit, the setpoint value of the superheater 
steam temperature is fixed at 613 . ℃

Control simulation tests have been carried out on a full-scope 
simulator of the USC boiler-turbine-generator  unit. For  the 
unit  load  change  from 100% full-load  to  90% load,  three 
different control schemes are tested: (1) the original cascaded 
PID controller, (2) the feedforward inverse neuro-controller, 
and  (3)  the  feedforward  inverse  controller  with  a  PID 
compensator. The control result of the original cascaded PID 
controllers is shown in Fig. 10.  Fig. 11 is the result of the 
feedforward inverse neuro-controller.  Fig.  12 is  the control 
result  of the feedforward inverse controller together  with a 
PID compensator. 

From Fig.  10, we find that the spray-3 control  valve has a 
very long stabilization time. From Fig. 11, it can be seen that 
the stabilization time of the superheater steam temperature is 
shortened  with  the  feedforward  inverse  controller.  But  a 
small  steady-state  control  error  exists  due to  the modeling 
error of the IDPM. From Fig. 12, we observe the best control 
result with shorter stabilization time and accurate steady-state 
value  by  an  inverse  controller  together  with  a  simple  PID 
compensator. 

By  comparing Fig. 10  and  Fig.  12,  it  is  noticed  that  the 
responses of the spray-2 and spray-3 control valves under the 
original  cascaded  PID  control  and  the  inverse  control  are 
quite different. But the final superheated steam temperatures 
are  both  very  close  to  its  set  point  value  613 .  That  is℃  
because, for a USC boiler, the superheated steam temperature 
is not only influenced by the spray-type steam attemperators, 
but also greatly influenced by another important factor,  the 
coal-water ratio.

Fig. 10. Control results of the original cascaded PID control.

Fig. 11. Control result of the IDPM-based neuro-controller. 

   



Fig. 12. Control result of the inverse controller with a PID 
compensator.

 6. CONCLUSION

In  this  paper,  a  recurrent  network  based  inverse  dynamic 
process model (IDPM) concept is developed and used as a 
feedforward  controller  to  improve  the  superheater  steam 
temperature control for a large-scale ultra-supercritical (USC) 
boiler unit. The main purpose of an inverse dynamic neural 
controller is to shorten the stabilization time of the control 
process.  In  order to eliminate the steady-state control  error 
induced by the modelling error of the inverse model, a simple 
feedback PID compensator is added to the inverse controller. 
Simulation control results from a full-scope simulator of the 
1000MW  power  generating  unit  have  demonstrated  the 
validity of the control scheme in improving the superheater 
steam temperature control. 

Since  the  superheater  system of  the  USC boiler  is  a  very 
complex  nonlinear  MIMO  system,  the  superheater  steam 
temperature is influenced by many factors. The selection of 
the input variables for the IDPM model and the selection of 
the data for model training both influence the control effect 
greatly.  Other  IDPM  structures  and  different  input 
combinations will be investigated and tested to achieve better 
control results in future work. 
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